
Noftoll (lull) Herscovlcl 
AnTeg 
52 Agnes Drive 
Framlngham. MA 01901 USA 
+ I  (508) 788-5152 
tl (508) 788-6226 (Fax) 
tul@eee.org (e-moll) 

i 

--j 
I _ _  

Chrlstos Chrlstodoulou 
Department 01 Electilcal and 
Computer Englneerlng 
Unlverslty of New Mexico 
Albuauetque, NM 87131-1356 USA 
tl (505) 277-6580 
+1 (505) 277-1439 (Fax) 
chrlstos@eece.unm.edu (e-mail) 

Applicqtions of Neural Networks in 
Wireless Communications 

Amalendu Patnaik‘, Dimitrios E. Anagnostou‘, Rabindra K. Mishra’, Christos G. Christodoulou‘, and J. C. Lyke’ 

Department of Electrical and Computer Engineering 
The University of New Mexico, Albuquerque, NM 87131 USA 

’Department of Electronics, Berhampur University 
Berhampur, Orissa, 760 007, India 

2Air Force Research LaboratoryNSSE, Kirtland AFB 
Albuquerque, NM, USA 

Abstract 

In recent years, the art of using neural networks (NNs) for wireless-communication engineering has been gaining momentum. 
Although it has been used for a variety of purposes and in different ways, the basic purpose of applying neural networks is to 
change from the lengthy analysis and design cycles required to develop high-performance systems to very short product- 
development times. This article overviews the current state of research in this area. Different applications of neural-network 
techniques for wireless communication front ends are briefly reviewed, stressing the purpose and the way neural networks 
have been implemented, followed bya description of future avenues of research in this field. 
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1. Introduction 

neural network is a simplified mathematical model of a hio- A .  logical neural network. It consists of a collection of intercon- 
nected neurons. From an engineering prospective, it can he 
regarded as an extension of the conventional data-processing tech- 
nique. The following definition of neural networks may be offered 
[l]: “A neural network is a’massively parallel distributed processor 
that has a natural propensity for storing experiential knowledge 
and making it available for use. It resembles the brain in two 
respects: ( I )  knowledge is acquired by the network through a 
learning process, and (2) interneuron connection strengths known 
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as synaptic weights are used to store the experiential knowledge.” 
The rapidly evolving field of neural-network applications in wire- 
less communication has witnessed several excellent contributions 
[3, 41: different problems have been successfully attacked new 
methodologies have been introduced and significant progress has 
been made in this dynamic area [S-71. Leaving aside the details of 
neural networks, for which several extensive books are available 
[ l ,  21, here we emphasize the applications made so far. Table 1 
summarizes the different applications of neural networks to wire- 
less-communications engineering. The following are some of the 
reasons for which the an of applying the neural-network technique 
is gradually becoming popular among researchers in the communi- 
cations area: 
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Table L A  list of some of the applications of neural networks for wireless communications. 

Microstrip anlenna analysis 

Design of microstrip 
antenndCPW patch 
antenna 

Direction-of-arrival @OA) 
estimation 

Adaptive beamforming 

Wideband mobile antenna 
design 

Applications I PurposeJAdvantage I Type of Network Used 1 References I To develop fast ANN models for I 
microstrip antennas, to avoid lengthy full- 
wave EM analysis with a faster method 
To bypass the repeated use of complex 
iterative processes, to avoid CPU Hopfield network, radial-basis-function 16,21-23,25-26 
intensive simulation procedur& network 
To reduce the computational complexities 
of the previously available methods of Radiallbasis-function network 27-33 
DOA estimation 
Real-time implementation of beamformer 
to respond to the time-varying 
environment 
To avoid lengthy full-wave EM analysis 
with a faster method 

Multilayer feed-forward network 
I 

Multilayer feed-forward network, 

10-15, l7-20,24 
4 

. . ~  

34,35 Hopfield network, radial-basis-function 
network 

Multilayer feed-forward, knowledge- 
based nema1 network 

+ 

38 

1.1 Nonlinearity 

On keen observation of any wireless engineering phenome- 
non - viz., the design or analysis of antennas, estimation of direc- 
tion of arrival, adaptive beamforming techniques, etc. - it is noted 
that these always have a quite nonlinear relationship with their cor- 
responding input variables. The inherent nonlinearities associated 
with these phenomena makes them ideally suited for neural net- 
works. Multilayer neural networks are employed to model such 
nonlinear relationships. Neural networks are also robust in func- 
tion approximation. In fact, in theory, a feed-forward neural net- 
work with at lest one hidden layer can approximate any nonlinear 
function. Substantially, a feed-forward multilayered network can 
be considered to be a "universal approximator" [8]. 

1.2 CAD Applications 

Computer-aided design (CAD) typically requires the 
development of suitable codes for modeling. Models based on 
closed-form formulas are simple but, at the same time, they are 
less accurate. Commercial. software uses computer-intensive 
numerical methods such as the FEM, the full-wave MOM, and 
F D F ,  etc. But the resulting codes are often too slow for design 
purposes, since they take a lot of computation time. On the other 
hand, neural networks can perforp computations at a very high 
rate because of their massive papllelism and highly connected 
struchqe. They can l e w  the:clpacteristics of input signals and 
adapt to changes in the data because of their adaptive nature; they 
can perform functional approximations because of their nonlinear 
nature. Besides this, a distinct'advantage of neurocompnting is that 
after proper training, a neural network completely bypasses the 
repeated use of complex iterative processes for new cases pre- 
sented to it. All these facts are suitable for the development of 
CAD models. These CAD models, capable of accurately predicting 
the parameters, are also very useful to wireless communication 
engineers. Although a neural network takes time during its train- 
ing, it supplies instant results in its implementation phase. 

1.3 Reduction of Mathematical Complexity 
I. 
..: 

In general, 'physicsEM-based analysis procedures are 
computationally complex. The use of neural networks can consid- 
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erably reduce the complexity. A straightforward application of a 
neural network uses the data derived from these complex mathe- 
matical procedures to train a neural network. After proper training, 
these neural models can be used in place of the computationally 
intensive physicsiEM-based models to speed up the analysis. 
Another approacb is to apply a neural network in conjunction with 
the mathematically complex physicsiEM-based analysis methods 
p1. 

2. Some Issues in Using Neural Networks 
In using neural networks, the identified problem at hand first 

bas to be checked for its suitability for neural-network implemen- 
tation. This means that it is advisable not to resort to neural- 
network techniques for simple linear functions, or for problems 
that can be implemented through a direct, closed-form fo rp la .  

After specifying the problem, it can either be implemented in 
total using neural network, or the whole problem can he divided 
into parts, and neural networks can be used to implement a part. 
By implementing the problem in its totality, the neural network 
acts as a black box, and does not disclose the physics behind it to 
the end user. On the other hand, partial implementation with a neu- 
ral network preserves the background phenomena of the problem, 
to some extent. The knowledge-based neural network also pre- 
serves the background physics of the problem, to some extent. In 
some cases, existing prior howledge is used to train the network 

. .  ., 1401. . a  . .  . 

The accuracy of a properly trained network depends on the 
accuracy of the data used to train the network. Therefore, care 
should be taken while generating training data, whether the data 
are generated by simulation or experimentally. Preprocessing of 
input and output data sometimes reduces the training time of the 
network to a large extent. Effective data representation is another 
step in tbis direction [41]. 

With the increase in network size, the nutnbr of training pat- 
terns required for proper generalization also increases. Because the 
generation of data in RF/microwave problems is very.expensive, it 
is therefore often desirable to develop the network with tbe mini- 
mum number of neurons in the bidden layer(s) as possible'(tbe 
number of input- and output-layer neurons is problem dependent 
and fixed), while at the same time avoiding over-training and 
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Figure 1. The problem at  hand can be modeled using a neural 
networks as a whole, where it works as a black box, or a neural 
network can be used to mudei a part of the whole problem. 
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Figure 3. Low-proflie antennas~ considered to date for neural- 
network applications. Microstrip structures include circular, 
square, rectangular, and trlangnlar; coplanar wavepide 
patchlslot antennas. 

under-training. For this, generated data may be divided into train- 
ing and test sets, for observing the error behavior with the progress 
of training. As a rule of thumb, the minimum number of hidden- 
layer neurons'required to avoid over-training and io obtain good 
accuracy for testing data is m, where Ni is the number of 
input-layer neurons and No is the number of output-layer neurons. 

cZtions were found in the antenna literature as far as wireless 
communication engineering was concerned. So, we feel it is 
appropriate to review the progress made so far in this area of 
research, particularly that of using neural networks for wireless 
communication front ends. We categorized this under three differ- 
ent headings - ( I )  low-profile antennas, (2) arrays and smart 
antennas, and (3) wideband and multi-band antennas - in order to 
discuss the progress made in each of these areas. Although a vari- 
ety of applications was found in the literature, the general para- 
digm of using neural network is as shown in Figure 2. In most 
cases it is found that the preprocessing of raw inputloutput data 
followed by an obvious post processing is helpful from a network- 
training point of view, but this is not always mandatory. The user 
c& choose his or her own data-processing strategy, depending on 
convenience. 

3.1 Applications to Low-Profile Antennas 

The emerging applications of wireless-communications sys- 
tems require high-performance, low-profile antennas to operate in 
fixed, mobile, handheld, and airborne environments. As communi- 
cation devices become smaller due to the integration of electronics, 
the antenna becomes a significantly larger part of the overall pack- 
age volume. This results in a demand for a similar reduction in 
antenna size. When the antenna occupies an appreciable volume of 
the compact wireless device, and as transceivers are integrated into 
other devices, the accurate characterization of the antemi becomes 
necessary for the device's high performance. Several of the low- 
profile antenna categories, such as microstrip antennas and copla- 
nar waveguide patch antennas (Figure 3) have been analyzed and 
designed using neural networks [ 10-261. All of these applications 
exploited the ability of a neural network to model nonlinear rela- 
tionships. Some applications used previously reported experimen- 
tally measured data for training, whereas others used data derived 
from simulations. In some cases, a neural network was used in 
conjunctjon with computationally intensive analysis methods, such 
as the spectral-domain method [19,20,23,24]. 

Neural network models have been developed for analysis 
parameters such as the input resistance, bandwidth, and resonant 
frequency of different regularly shaped microstrip antennas [ 10-15, 
17, 181. A block-diagram representation of a typical example of 
calculating the resonant frequency of a triangular microstrip 
antenna [IO] is shown in Figure4. The inputs to the network.are 
the side length, the height of the substrate, the dielectric constant, 
and the mode numbers 

3. Applications 
Table 1 summanzes the applications of neural networks in 

wireless communications. More specifically, neural-network appli- 
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Figure 4. The resonant-frequency calculation of a triangular 
microstrip antenna using neural networks. A 5 x 5 x 3 x 1 mui- 
tiiayer perceptroo, trained using a back-propagation algo- 
rithm, was used. 

IEEEAnlennss and Propagation Magazine, Vol. 46, NO. 3, June 2004 



IANNI 
1 A 

Model 

1 - 
.cr h I 

Figure 5. The calculation paradigm for the design of a square 
patch antenna. &r is the dielectric constant, I is the side length 

of the patch, f is the output of the A", and Wolf and 
Kuoppik's model for a square patch was used. 

The calculation of the resonant frequencies of various regu- 
larly shaped microstrip antennas, using a single network, was 
demonstrated in [17]. In this reference, the areas of other shapes 
(e.g., triangular and circular) were equated to an equivalent rectan- 
gular microstrip antenna. The inputs to the generalized neural- 
network model were thus the length, the width, the height, and the 
dielectric constant of the substrate, and the mode numbers. It thus 
needed preprocessing of the raw data in order to calculate the 
resonant frequency. Accuracy and simplicity were the key features 
of these networks so developed. Therefore, they could he useful 
for the development of fast CAD algorithms. 

Neural networks have also been used in conjunction with a 
spectral-domain technique termed the Neurospectral Method for 
the analysis of microstrip antennas [19,20,24]. The complex reso- 
nant frequency of microstrip resonators and the input impedance of 
rectangular microstrip antennas have been calculated using this 
method. The aim was to reduce the computational complexities 
involved in the spectral-domain approach (SDA). In this work, the 
singularities arising in the spectra-domain approach were suitahly 
handled hy neural networks, thereby considerably decreasing the 
computation time of the spectra-domain approach. The results also 
compared well to those from the spectral-domain approach. 

On the design side of low-profile antennas, neural networks 
have been used for the design of square, rectangular, and circular 
microstrip antennas, and for coplanar-waveguide patch antennas 
[16, 21-23, 25-26]. The calculation paradigm of the'design of a 
square patch antenna is illustrated in Figure 5 .  I ..) 

The neurospectral method, used to design rectangular patch 
antennas [23], uses the following proposition, w&ch handles the 
singularities occ$ng in the spectral-domain approach: 

: 'Proposition: If ) ( x , y )  is a function with singularities at 

(xi ,y;)  in the ranges 0f.x and y, and if g ( s , y )  is a continuous 
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function such that g ( x , y ) = f ( x , y )  at all nonsingular points of 

f ( x , y ) ,  then f ( x , y )  can he expressed in terms of g ( x , y )  as 

f ( X , Y )  = g ( . . y ) + C g ( x , y ) G ( x - x ; ) G ( y  -U,). 
i,j 

Using an artificial neural network, it is easy to implement the 
function g(x,y). After that, instead of integrating the function 

f ( x , y ) ,  one can use its alternate (the right-hand side of the equa- 
tion) as the integrand. Application of this proposition drastically 
decreases the computation time of the spectral-domain approach. 
Although the neurospectral technique development stage is a time- 
consuming step, compared to the development stages of other 
commercial CAD models, the technique takes much less time dur- 
ing its implementation stage. 

Another generalized physical design procedure for patch 
antennas using neural networks was discussed in [26]. This dealt 
with the physical design of patch antennas, given the desired 
parameters such as the resonant frequency, the feed-point position, 
the substrate thickness, the relative permittivity, the input imped, 
ance, and the efficiency. Electromagnetically trained artificial neu- 
ral network (EM-ANN) models have also'been developed for the 
design of coplanar-waveguide patch antennas as a part of the 
design of low-profile antennas using a neural network [25]. The 
modeling using electromagnetically trained artificial neural net- 
work models compared well with electromagnetic simulation and 
measurement, validating the approach. 

3.2 Applications in Arrays and Smart 
Antennas 

The future of wireless systems will certainly include wider 
deployment of arrays. Arrays use multiple antennas, or elements, 
to achieve enhanced performance, including high gain. They can 
also support electrical beam steering to improve transmission and 
reception, and null steering to reject interfering signals. The trend 
toward the.increased use of antenna arrays and the development of 
new approaches for using arrays to improve system performance is 
going on in wireless communication. In this respect, neural net- 
works have been successfuIly applied to direction-of-arrival esti- 
mation ind beam forming for antenna arrays [27-351. The key 
point of using neural networks is that the mapping between the 
received signal and the antenna's behavior is a continuous func- 
tion, and therefore it is possible to model it with an neural network 
trained at discrete samples along the function. 

Radial-basis-function neural networks were developed to 
reduce the computational complexities of monopulse and MUSIC 
algorithms [27, 281. Radial-basis-function networks have the abil- 
ity to interpolate data in higher dimensions. The main advantage of 
radial-hasis-function neural networks is the substantial reduction in 
the CPU time needed to estimate the direction of arrival. The 
robustness of neural-network-based direction-finding systems in 
noise and under conditions of external interference was observed 
in [29]. 

Multiple-source tracking with neural-network-based smart 
antennas is another novel application of neural networks for wire- 
less communication front ends [30]. A family of radial-basis-func- 
tion neural networks was used in this work, to perform both detec- 
tion and direction-of-arrival estimation. The field of view of the 
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antenna array was divided into spatial angular sectors, which were, 
in turn, assigned to a different pair of radial-basis-function neural 
networks. This work revealed the fact that neural-network-based 
direction-finding algorithms possess the ability to locate sources 
that are greater than the number of array elements. 

An application of a neural fuzzy network for direction-of-. 
arrival estimation was reported [31]. Direction-of-arrival estima- 
tion as an application of neural networks can also he found in [32, 
331. The procedures used differed in their approach, in the types of 
network used, in the amount of problem complexity involved, and 
in the number of directions that could he simultaneously ddected. 

Beamforming is one of the main functions of a phased-array 
processing system. It involves forming multiple beams through 
applying appropriate delays and element weightings to the signals 
received by the sensors. The purpose of this is to suppress 
unwanted jamming interference, and to produce the optimal 
beamformer response, which contains minimum contributions due 
to noise. An analog circuit was implemented for computing the 
minimum-variance distortionless response (MVDR) to the beam- 
forming problem based on neural networks [34]. The minimum- 
variance distortionless-response-based neural circuit worked sat- 
isfactorily under a stringent environment of strong jammers, as 
well as closely spaced jammers. 

A new approach to the problem of neural-network-based 
beamforming was introduced in [35]. In this work, the computation 
of the optimum weights was accomplished using three-layer radial- 
basis-function neural networks. The results obtained from this 
network were in excellent agreement with the Wiener solution. 
The network was successful in tracking multiple users, while 
simultaneously nulling interference caused by co-channel users. 
Neural-network applications to antenna arrays were also used in 
[36] to avoid interference. 

3.3 Applications in Wideband and 
Multi-Band Antennas 

As integration increases, a single antenna is oAen required to 
support two or more of the many wireless services across a broad 
frequency range. Multi-hand and widehand antennas are being 
developed to meet this need. The trend towards multi-hand capa- 
bility will continue and accelerate as more services at different fre- 
quencies become available. As services and frequency require- 
ments proliferate, wideband antennas may he a more economical 
solution. Wideband antennas perform consistently across a con- 
tinuous block of spectrum, providing capabilities for current and 
future applications that are not limited to specific, narrow bands. 

A literature survey revealed that a few examples of work 
have been done in neural-network modeling for wideband antennas 
[37, 381. In [37], a broad-impedance-bandwidth rectangular planar 
monopole antenna design was made with neural-network models. 
The operating hand of this planar monopole antedna was 1700- 
2500MHz, suitable for DCS (1710-l880MHz), PCS (1850- 
1990MHz), DECT (1880-1990MHz), PHS (1895-1920 MHz), 
IMT-2000 (1885-2025 MHz), UMTS (1920-2170 MHz), and 
WLAN (2400-2485 MHz) operations in mobile communication. 
The optimum structure found with a neural-network optimizer for 
this antenna was L = 36mm, W = 16mm, h (the height of the radi- 
ating structure above the ground plane) = 0.8 nun, with a foam 
substrate ( E ,  = 1 ) having 0.005 mm thickness. As future mobile 

communications needs mobile terminal antennas with widehand 
and multimode operation capabilities, this compact widehand pla- 
nar monopole antenna, designed using neural-network models, can 
provide the solution, to some extent. Besides the fact that'the neu- 
ral-network models developed were reliable and accurate, as was 
evident from the simulation results, the neural-network models 
dramatically saved the time spent on antenna design. 

Knowledge-based neural-network modeling techniques have 
hebn utilized for the design of wide-bandwidth coplanar 
waveguide paich/slot antennas [38]. The coplgar waveguide 
patchislot antenna, designed using the developed model, exhibited 
a 32% impedance bandwidth'near 5.4 GHz in a 50 C2 system. The 
modeling approach developed was general, and can he used for 
modeling other antenna structures, as well. 

4. Future Trends 

There is a push to develop low-profile and embedded anten- 
nas throughout the wireless communications industry, for a variety 
of applications. In addition to the obvious requirement for small 
antennas on handheld terminals, low-profile antenna designs are 
important for fixed wireless applications. Two major challenges 
arise in the design of small an tews .  First, there is a fundamental 
relationship among the size, bandwidth, and efficiency of an 
antenna. Second, the gain is related to the size of the antenna: that 
is, small antennas typically provide lower gain. A review of the 
literature revealed that neyal networks have been applied for the 
analysis/design of microstrip antennas and coplanar waveguide 
patch antennas. Many other types of low-profile compact antennas 
with high efficiency are available for use in compact terminals. 
These include the inverted-L, inverted-F, dual inverted-F, and pla- 
nar inverted-F antennas. Neural networks can be used to find an 
optimized, compact structure for these antennas, and to find ways 
to extend their bandwidths. Knowledge-based neural networks 
may he helpful in this, using existing ideas about these antennas. 

As far as antenna'mays are concerned, a lot of work has 
been done in direction-of-arrival estimation and beamforming 
using neural networks. However, more avenues can still be identi- 
fied for the analysis, design, and application of antenna mays. 
Aircraft and military ships have limited space for onhoard anten- 
nas. They require arrays that support communications, radar, signal 
intelligence, and navigation across a wide range of bequencies. 
The same is the case for civilian vehicles that carry radios for 

30 cm. 
I I 

LL;; h = 1.588mm. 

Figure 6. A reconfigurable antenna structure. 
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Figure Sa. The SI, values from measurements (solid line) and 
the output of the neural network (dashed line) for the antenna 
Configuration shown in Figure 7a. 

~. 
communication, navigation, and entertainment. Designing these 
wideband, multifunctional arrays is always challenging. The chal- 
lenges can be met, to some extent, with the use of neural-network 
techniques. Wideband elements, such as log-periodic elements, 
spiral, and sinuous elements, can be used as the basis of the array. 
Neural-network analysis models can be developed by using 
experimental data for different analysis parameters of these anten- 
nas. Furthermore, these wideband elements must be arranged 
carefully, to allow the main beam of the array to be scanned over a 
wide angular range at all frequencies within the array's bandwidth. 
Because the beam pattern is a function of the placement of the 
elements and is nonlinear, a solution for the placement of the ele- 
ments can be found with the help of neural networks. A frequency- 
dependent effect, mutua! coupling, is an important consideration 
for antenna arrays. The effects of mutual coupling on different 
parameters of the array can be estimated as a function of frequency 
using neural networks, as well. 

When a single array configuration does not meet the 
demands of an application, a reconfigurable m a y  can be used. 
These reconfigurahle antennas are becoming popular among 
antenna engineers [39, 401. Newer approaches use PIN diode or 
micro-electromechanical-system (MEMS) switches to reconfigure 
arrays, or elements within the array, for specific frequency bands 
or operational scenarios. But to accomplish the analysis of these 
types of antennas, the switch and the antenna elements need differ- 
ent analysis techniques, which result in a cumbersome procedure 

Figure 7a. The reconfigurable antenna structure: The ON 
switch positions are marked with small circles, and the corre- 
sponding activated array elements are shaded black. 

Figure 7b. The reconfigurable antenna Structure: The ON 
switch positions are marked with small circles, and the corre- 
sponding activated array elements are shaded black. 
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Figure Sb. The S,, values from measurements (solid line) and 
the output of the neural network (dashed line) for the antenna 
configuration shown in Figure 7b. 

for the characterization of these antennas. Neural networks can 
piay a major role at this point, either to reduce the computational 
complexity involved in the analysis, or to find the switch positions 
in the array structure in order to get the required characteristics of 
the antenna. 

As an example, we have analyzed a MEMS-based frequency- 
reconfigurable antenna using neural networks. The MEMS switch- 
based antenna used for modeling is shown in Figure 6. The basic 
antenna was a 130" balanced bowtie, chosen due to its inherently 
high bandwidth. The electromagnetic performance of the RF 
MEMS switches was considered to be ideal, and their placement 
was accomplished by small physical connections of the antenna's 
adjacent conducting parts. Making all the switches OFF, the 
antenna had a bandwidth from 1.5 GHz to 2.5 GHz, and the radia- 
tion pattern was similar to that of a printed dipole antenna. How- 
ever, setting the switches to ON made the antenna resonate at a 
number of different frequencies. The frequencies at which it reso- 
nated were completely a function of the switch positions that were 
in the ON state. In order to implement this nonlinear function, we 
used a multilayer perceptron network, trained in the backpropaga- 
tion mode. The network took Os (for an OFF switch) and Is (for an 
ON switch) in a specific sequence, and presented the SI, as its 
output at the prespecified sampled frequency points. After proper 
training of the network, the antenna was tested for results with a 
specific combination of switches. The graphical results for two 
different combinations of switches (Figures l a  and 7b) are shown- 
in Figures Sa and 8b, respectively. The network that was devel- 
oped not only reduced the computational complexities involved in 
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the numerical modeling of reconfigurable antennas, hut also gave 
excellent results. 

5. Conclusion 

The recent surge of interest among communication engineers 
in applying neural-network techniques as a tool of analysisidesign 
has opened many avenues for tackling the needs in wireless com- 
munications. High-performance antennas are being developed to 
satisfy the competing demands of emerging wireless applications. 
This article reviewed the current applications of neural networks in 
these high-priority areas, and traced the further avenues in which 
neural networks could play a major role. Recently, the possibility 
of developing antenna designs that in some way exploit the prop- 
erties of fractals to achieve the goals of compact size, low profile, 
conformal, and multi-hand antennas, at least in part, has attracted a 
lot of attention [42-441. Neural networks can also find suitable 
places for analysis of these antennas. 
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